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The Electronic Structure of Non-Heme Iron(lll) —Hydroperoxo and Iron(lll) —Peroxo Model Complexes
Studied by Mtssbauer and Electron Paramagnetic Resonance Spectroscopies
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Ferric peroxo complexes are currently extensively studied due
to their proposed occurrence as reactive intermediates in the

catalytic oxygenation reactions of cytochrome P4&0d bleo-

mycin? Recently, several mononuclear nonheme Fedll)
hydroperoxé-7 and Fe(lll)}-peroxd®-¢5*89complexes have been
prepared in solution and studied by YVisible, EPR, Resonance
Raman, and Mass SpectrometfyThe two species displayed in

Scheme 1 have been characterized in solution as purple low-spin

Fe(lll)—hydroperoxo 1) which converts upon addition of base
to a blue Fe(lll)-n?-peroxo specie].* Here, we report a detailed
study of these two compounds by EPR anddsloauer spectros-
copy.

Solutions of 1 were prepared from [(trispicMeen)FeCI}CI
2.5H,0 (trispicMeen represents the ligaNemethylIN,N',N'-tris-
(pyridylmethyl)ethane-1,2-diamine). 100-fold excess of hydrogen
peroxide was added to a 1.7 mM methanolic solution of the
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Figure 1. X-band EPR spectrum of the peroxo compo@n@liquot of
the Mossbauer sample, 47% enriched wiflre). Experimental condi-
tions: temperature 10 K, microwave frequency 9.64405 GHz, modulation
1.28 mT/100 kHz. The solid line is a spin Hamiltonian simulation with
parameter® = —1.7 cnt?, E/D = 0.08,0(E/D) = 0.025,B, = —0.004
cm1, g = 2, and Gaussian line width = 60 mT (atg = 1, frequency
dependent part only, isotropic). The arrow marks an additional Gaussian
signal of a rhombic Fe(lll) high-spin contamination, which was simulated
with an isotropic effectivey value of 4.27. The inset shows the low-field
part of the experimental spectrum with alternative simulations Bith
= 0 (dashed line).
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ferrous starting complex. Compouridwas converted t@ by
addition of 5 equiv of BEIN. X-band EPR and Mesbauer spectra
of the 47%5Fe enriched complexek and 2 were recorded at
cryogenic temperatures (below 50 K).

The EPR spectrum df displays a characteristic low-spin ferric
spectrum$=1/2,g=2.12, 2.19, 1.95), as reported previously,
and an ubiquitous high-spin signal@t 4.3 (S= 5/2 and E/D
= 1/3). In agreement with the corresponding $dbauer spectra,
it is established that the latter signal amounts to ca. 12% of total
iron in our best preparations. It is most probably due to an
oxidative deterioration product df.

Figure 1 shows the X-band EPR spectrum 2fat 10 K.
Prominent derivative signals gt= 7.4, 5.7, and 4.5 are typical
for a high-spin ferric speciesSE 5/2). In addition, an isotropic
weak signal ag = 4.27 is observed and assigned to deterioration
products. Additional very weak signals @t= 2 are due to the
presence of residual low-spin complexes. Tisxhibits a signal
of a high-spin Fe(lll) ion with almost axial zero-field splitting
(ZFS)* The signals ag ~ 7.4 andg ~ 4.5 are assigned to the
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effective valuesgy',(1/2) andg'(1/2) of them; = £1/2 Kramers
doublet, respectively. The signal @t~ 5.7 corresponds to the
effective g'(3/2) of the middle doubletms = +3/2. From the
temperature dependence of the relative subspectra intensities
(2—15 K), a negative axial ZFS parameter £ 0) was established
with ms = +1/2 being the excited state. We have successfully
simulated the spectrum only by using the somewhat unusual spin

1.001

Hamiltonian (eq 1). s
_ > SS+1), E> 2 £
H=D|S’ ~ =75~ +5(8/ ~ 87| + 0, + ugBgS (1) :

with  O,=-2/3B,[0,°+ 20v20,% + B,O,°

O, is a phenomenological symmetry adapted fourth order term
in the usual effective spin Hamiltonian. TkR™ terms represent
equivalent operators of fourth degreeSmand the parametei,
andB,° parametrize cubic and trigonal contributions to the ZFS.
We setB,° to zero and restricted the optimization to value®of -
E/D, andB,. The physical effect of the additional ZFS term is a velocity [mm/s]
mixing of ms = £1/2 and+5/2 levels, which introduces a relative  Figure 2. Magnetic Mssbauer spectra of complé&xmeasured at 4.2 K
shift of the energies and effectivg values of these Kramers  with fields of 0.04, 3, ad 7 T applied perpendicular to therays. The
doublets. solid line is a simulation for the hydroperoxo species “FeOOH” with

In agreement with the Mesbauer spectra (see below), a ParameterS=1/2,g=(2.12 2.19, 1.95) = 0.19 mm s*, AEq =

. . . I 1 - —2.01 mm.s?, n = 0.4, a = 43 (Euler angle), and\/gngn = (7.77,
satisfactory fit was obtained V.Vltb = -L.7cnm’, EID =0.08, —3.65,—41.09) T. The dashed line represents a rfhombic Fe(lll) high-
andB, = —0.004 cn* (see Figure 1). We note that it has not  gpin contamination X’ (S = 5/2,D = 1.5 cnt, E/D = 0.33,g = 2,
been possible to reproduce the EPR spectrum without the fourth-é/gngN = —21 T, 12% relative intensity).
order term in eq 1. Indeed, neither the exact position of the —
different resonances nor their relative intensities could be productsgA. The electric field gradient (efg) tensor has a large,
satisfactorily fitted without this term. With the best valBg = negative main component,,; = —2.01 mm s?, and a relatively
—0.004 cnmt, the simulated derivative lines appear at effective small asymmetry parametey,= 0.4. The fits could be slightly
g valuesy',(1/2) = 7.43,g'(1/2) = 4.53, andy'A3/2) = 5.69, in improved by the introduction of an Euler rotation of the efg tensor
contrast tog'(1/2) = 7.74,9'((1/2) = 4.22, andy'3/2) = 5.62 around thez axis by an angle. = 43° with respect the principal
for B, = 0. The variation shows the influence Bf on thems = axes systems ok andg tensors; rotations around ther y axes
+1/2 wavefunctions. A simulation for the latter case is shown in \ere found to be less thart,vhich indicates colinearity of the
the inset of Figure 1. Moreover, the peculiar differences in line principal z axes of the three coupling tensor tensors.
widths of the resonances, particulagy(1/2) andg'(1/2), could The Massbauer parameters can be qualitatively rationalized in
be easily simulated by introducing 4fiD strain. A Gaussian  a ligand field description, which strongly implies a low-spin
distribution for the rhombicity parameter was adopted, whereas Fe(lll) complex with (d,, d,)*(dy)* electron configuration, in
the intrinsic linewidth was taken to be frequency constant, which excellent agreement with the previous interpretation of the EPR
leads to a variation of the linewidths in the field swept spectrum g values of this comple% and other model8 of activated
according to the respectivg values. Using this model the  Bleomycinl® The parametrization uses the crystal-field model
experimental pattern is nicely reproduced with a half width for developed by Griffith* for the description of the spinorbit
the E/D distribution of o(E/D) = 0.025. interaction of distorted £§)> complexes. The best solutions fbr

Magnetic Mssbauer spectra of the Fe(Il)OOH and Fe(IH)O  within Taylor's “proper axes” systemM(< 2/3 A)!® imposes a
speciedl and2 were measured at liquid helium temperature with  relatively large axial splitting to thegorbital set,A/A = —11.4
applied fields of 0.04, 3, and 7 T. As shown in Figure 2, the ith a weak rhombic distortion//A = 4.4¢1°This splitting scheme
spectra of the hydroperoxo compl&are rather broad and show  was interpreted as the result of dominating antibonding interaction
only weak overall splitting. This is quite typical for Fe(lll) low-  of the iron |xyQorbital with thezz* orbital of the hydroperoxo
spin system&? The pattern is superimposed by the widely split - group (if this is positioned along thedirection)1°3The resulting
six-line spectrum of a minor high-spin ferric component (ca. 12%), anisotropy of the valence electrons caused by the elettota
which was simulated adopting a rhomtSic= 5/2 species using  in a single “pan-cake” shapedyrbital is expected to induce a
the EPR parameters from above. The pronounced asymmetry ofstrongnegatie valence contribution to the main component of
the low-spin spectra df indicates an anisotropy of the hyperfine  the efg in thez direction (and a small asymmetry parameter), in
tensor in conjunction with a large quadrupole splitting. The small accordance with the experimental observation. The asymmetry
isomer shift,d, of 0.19 mm s* at 4.2 K is typical for an iron(lll) of the experimental magnetic hyperfine tengois also consis-
low-spin complex? The spectra were simulated with the usual tent with the ¢, hole picture. The orbital coefficients in
spin Hamiltonian approach fas = 1/2 by using a magnetic  this model® lead to strong orbital and spin-dipolar contributions
hyperfine coupling tensok/gnSn = (+7.77,—3.65,—41.09) T, to A, which explain the large, negativevalue in the direction
and the anisotropig values were determined by EPR. The ele- of The efg main component. The best solution for féensor

ments of theg matrix were all set to be positive. This is not a  that can be obtained in the ligand-field picture (witk 0.35,P
constraint since the Misbauer spectra are sensitive only for the
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axial and rhombic parametef®,= —1.1 cnt* andE/D = 0.08.
For consistency, however, the same model parameters were
applied as used in the EPR simulations. The othésdbauer
parameters obtained are: i) the large isomer shift 0.64 mm
s71/ii) the large quadrupole splittindEq = +1.37 mm s with
maximal asymmetry; = 0.98, and iii) the slightly anisotropic
magnetic hyperfine tenséx/gnSn = (—22.71,—22.09,—20.40)
T. The isomer shift and quadrupole splitting of compo@rare
both unusually large for typical high-spin ferric complexgbut
interestingly, they closely resemble those of the peraditerric
intermediate of methane monooxygert@sad those of a synthetic
(u-1,2-peroxo)diiiron(lll) compoundd = 0.66 mm s, AEq =
1.40 mm s1).2° A previous M@sbauer and EPR investigation of
a peroxoferriporphyrin complékalso revealed similar properties
for the FeOO unit in a heme environment. Particularly, the isomer
shift and magnetic hyperfine coupling constants are large and very
close to those 0P, whereas the quadrupole splitting is signifi-
‘ ‘ ‘ cantly lower @&0.62 mm s?). It is interesting to note that similarly
-10 0 +10 high values of) are otherwise observed only for the Fe(lll) high-
velocity [mm/s] spin site of nitrosylated nonheme compounds wiffeNG’
Figure 3. Magnetic Mssbauer spectra of compl@xmeasured at 4.2 center$223 The large isotropic part of the magnetic hyperfine

with fields of 0.04, 3, ad 7 T applied perpendicular to therays. The tensor A/gySy = —21.7 T) is also in the upper range of typical
solid line is a simulation for the peroxo species “FeOO” with parameters o . B 24

S=5/2,D = 1.7 cnrl, E/D = 0.08,Bs = ~0.004 cmt, g = 2,0 = values" found for ionic ferric systems-20 to —22 T): ThL_Js, _
0.64 mm s, AEq = +1.37 mm.s?, = 0.98, andA/guB = (—22.71, the Mtssbauer parameters reveal the presence of a high-spin

—22.09,—20.40) T. Fe(lll) moiety with relatively low total covalent delocalization
of valence electrons. The unusally large quadrupole splitting for
= 49.25 T) isAlgnfn = (+2.3, —6.0, —41.1) T, which is very a 3d (bg)3(ey)? configurat.io.n resembles those pfoxo-diiron-
close to the experimental value. Hence, the magnetissdauer (I complexes. The origin of those values was assigned to
spectra support the description bls a system with (g d,)*- prevailing anlso_trppyof the 3d pop_ulatlon due to anisotropic
(dyy)! electron configuration with a destabilized, drbital in the covalency, as it is induced bysa single short oxo b8nWO
toq Orbital set, which is due ter interaction of with the OOH calculations on [Fe(EDTA)(Q)] support the spectroscopically
group. We note that the Griffith model might not be fully valid deduced side-on binding mode of the peroxo ligétieom this
in its simplest form as it was applied here if the symmetry is less Model study, a dominating strong, covalenbond between Fe
than rhombic. Recently, such a deviation was noted for another % @nd peroxidez was identified, which provides a perfect
low-spin Fe(lll) center from a rotation of thgandA tensors, as ~ €xPlanation for the large efg and the anisotropy of Aheensor
determined from complementafiFe EPR and Mssbauer datH. for the peroxo comple.
We C.a_nnOIF exclude that _SUCh lOW'SymmetrY efTECtS are also Supporting Information Available: Experimental Section. This
prevailing in the electronic structure df, which is entirely material is available free of charge via the Internet at http://pubs.acs.org.
asymmetric. (We gratefully acknowledge a reviewer's comment
pointing out this limitation.) IC010635E
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